
TestBench Components

• “Design” ….HDL code….converted as RTL……goes into IC or SoC
• Design Engineer

• “Test Bench” or “TB” ….HDL (or any other) code…used to verify design
• Verification Engineer

• For Design Engineer….Verilog and SystemVerilog is same

• SystemVerilog is preferred by Verification Engineer

• SystemVerilog = Verilog + A lot of verification supporting features.

• The design code might contain hierarchical level of modules.

• There will be always a top level module in the design which instantiate the
hierarchical modules.

• The Test Bench is again another ‘module’ in SV.

• The ‘Top-level module’ of the design will be instantiated in the TB module.

Design and Testbench

module a();
endmodule:a

module b();
endmodule:b

module c();
endmodule:c

module d();
endmodule:d

module cluster();
c c1(.*)
d d1(.*)

endmodule:cluster

module soc_top();
cluster cluster1(.*)
a a1(.*)
b b1(.*)

endmodule: soc_top

module test_bench();
soc_top soc_top1(.*);

//TB Functionality
endmodule: test_bench

module test_bench();
//TB Functionality

endmodule: test_bench

OR

module top();
soc_top soc_top1(.*);
test_bench test_bench1(.*);

endmodule: test_bench

Design and Testbench

What is DUT?

DUT

 Linear TestBench is the simplest, fastest and easiest way of writing

testbenchs.

 This became novice verification engineer choice.

 It is also slowest way to execute stimulus.

 Typically, linear testbenchs are written in the VHDL or Verilog. In

this TestBench, simple linear sequence of test vectors is mentioned.

 Stimulus code is easy to generate.

 Small models like simple state machine or adder can be verified with

this approach.

Linear Testbench

SystemVerilogTestbench Features

 Constrained random generation – built on class infrastructure

 Universal randomize() method

 In-line random generation (randomize() with)

 Spawn threads (fork….join/join_any/join_none)

 Control threads (process class methods)

 Inter-process communication (mailboxes, semaphores etc)

