
TestBench Components

• “Design” ….HDL code….converted as RTL……goes into IC or SoC
• Design Engineer

• “Test Bench” or “TB” ….HDL (or any other) code…used to verify design
• Verification Engineer

• For Design Engineer….Verilog and SystemVerilog is same

• SystemVerilog is preferred by Verification Engineer

• SystemVerilog = Verilog + A lot of verification supporting features.

• The design code might contain hierarchical level of modules.

• There will be always a top level module in the design which instantiate the
hierarchical modules.

• The Test Bench is again another ‘module’ in SV.

• The ‘Top-level module’ of the design will be instantiated in the TB module.

Design and Testbench

module a();
endmodule:a

module b();
endmodule:b

module c();
endmodule:c

module d();
endmodule:d

module cluster();
c c1(.*)
d d1(.*)

endmodule:cluster

module soc_top();
cluster cluster1(.*)
a a1(.*)
b b1(.*)

endmodule: soc_top

module test_bench();
soc_top soc_top1(.*);

//TB Functionality
endmodule: test_bench

module test_bench();
//TB Functionality

endmodule: test_bench

OR

module top();
soc_top soc_top1(.*);
test_bench test_bench1(.*);

endmodule: test_bench

Design and Testbench

What is DUT?

DUT

 Linear TestBench is the simplest, fastest and easiest way of writing

testbenchs.

 This became novice verification engineer choice.

 It is also slowest way to execute stimulus.

 Typically, linear testbenchs are written in the VHDL or Verilog. In

this TestBench, simple linear sequence of test vectors is mentioned.

 Stimulus code is easy to generate.

 Small models like simple state machine or adder can be verified with

this approach.

Linear Testbench

SystemVerilogTestbench Features

 Constrained random generation – built on class infrastructure

 Universal randomize() method

 In-line random generation (randomize() with)

 Spawn threads (fork….join/join_any/join_none)

 Control threads (process class methods)

 Inter-process communication (mailboxes, semaphores etc)

