
• To match the design with the intent and specs

• Unexpected behavior of design

• Incorrect interaction between IPs/ sub systems

• Cost of re spin runs into millions of $$

• 70-80% of design time and resources spent on verification

Need of Verification

To build confidence and stay in business

 Verification became the main bottleneck in the

design process.

 The functional verification bottleneck is an effect

of rising the design abstraction level.

 Majority of ASICs require at least one re-spin with

71% of re-spins are due to functional bugs.

Marketing Requirements Document (MRD)

Architecture Specification

Design Specification

RTL Design

Synthesis

Physical Design

Timing Analysis

Tape Out

Verification Plan

6/21/2020 Verification with System Verilog 4

Design Specifications

Floor
Planning Technology

Library

SDF &

Parasitics

Design Entry (Schematic/HDL)

Functional Verification & Power Analysis

Logic & Test Synthesis

Layout Design

Placement & Routing

Static
Timing

Analysis

Gate
Level

Simulation

Formal
Verification

Power
Estimation

Physical Verification

Tapeout

Front End

Back End

Floor Planning & CTS

Example of coding error

The later in the product cycle a bug is found the more costly it is.

Product Cycle

Block

Level
Subsystem

Level

System

Level

Post

Silicon

Cost

of Bug

Field

Why Verify?

Case Study 1:
LOA Technology
2 fully custom FPGA’s

45 man weeks of verification effort 131 bugs found

10 man-weeks of lab debug 9 bugs found

100% statement coverage

FPGAs Need Verification!

Source: Chris Spear: System Verilog for Verification

Case Study 2:
•Fore River Group
•Hardware acceleration for network security.
•Existing testbench with 100 directed tests.
•Shipping to customers.
•7 man-months of effort.
•Using random verification found 40 bugs

Case Study 3:
•Fore River Group
•Packet Switching device
•Verification considered complete
•6 man-months of effort.
•Using random verification found 42 bugs

FPGAs Need Verification!

Source: Chris Spear: System Verilog for Verification

How to verify

all the top-level

connectivity is

correct?

UART I2C

Flash

Interface

10/100

Ethernet

DDR2/3

PCI

Camera

Interface

MIPI CSI-2

MPEG

GPIO UART2

Graphics

Processor

Embedded

Memories

MIPI DSI HDMI TX

Graphics

Processor

JEPEG Codec

CPU Cluster 1

CPU Cluster 2

USB Host 2.0
USB

PHY

USB

PHY
USB OTG2.0

S/PDIF

SATA 1/2

SD/MMC 4-ch

Audio Codec

Touch Screen

Controller

Audio

SubSystem

General

Purpose ADC

Block Diagram of Typical SoC

• System On Chip (SOC) is equivalent to Computer motherboard for phone.

• A typical SOC includes

• CPU - multi-core

• GPU - multi-core

• ISP (Image Signal Processor)

• Video Encoders/Decoders

• Memory & caches

• Miscellaneous components..

• A typical design cycle of around 2 years

• Involves multiple vendors supplying Design

IPs & services creating inter-dependencies.

Smart Phone SoC

Functional Verification

 Process to demonstrate functional correctness of the design

 Accounts for 60 – 80% efforts of ASIC design cycle

 Logic Simulation using System Verilog UVM

 Random Testing – scenarios engineer cannot anticipate

 Functional Testing – scenarios defined by engineer

 Corner Case Testing – Hard to hit scenarios defined

 Regression Testing – Automated combination of all of above with repetitive runs

 Formal Verification using System Verilog Assertions

 Immediate Assertions (similar to if statements)

 Concurrent Assertions (Behavior spans across multiple clock cycles)

 Cover Properties (identify hitting scenarios)

 Emulation Testing – Mimic HW to test real life scenarios

Functional Verification

• A clear and un-ambiguous specification is used to create a Verification Plan

– defines what to test & how.

• Plan defines Test cases, Coverage and Checker model

• Verification Environment consists of:

– Monitors, Drivers, Scoreboards, Stimulus generator , coverage Model

• Stimulus generation is random, automated & user constrained to drive legal stimulus

• Verification is signed-off when all verification goals are met (100%)

Metric Driven Verification

 UVM is a standard verification methodology from

the Accellera Systems Initiative that was developed

with support from multiple vendors: Aldec,

Cadence, Mentor Graphics, and Synopsys.

 It is designed to enable creation of robust, reusable,

interoperable verification IP and testbench

components

 Includes a Reference Guide, a Reference

Implementation in the form of a System Verilog base

class library, and a User Guide.

 First version UVM 1.0 released in 2011

 Supports Object Oriented Programming (OOPS)

concepts

Universal Verification Methodology

Why are Methodologies Needed?

Vertical and horizontal Reuse

Standardized architecture across teams

Automation

Upgradation

Consistent approach – naming conventions

Coding guidelines

Controllability

Vendor Dependence

