
• To match the design with the intent and specs

• Unexpected behavior of design

• Incorrect interaction between IPs/ sub systems

• Cost of re spin runs into millions of $$

• 70-80% of design time and resources spent on verification

Need of Verification

To build confidence and stay in business

 Verification became the main bottleneck in the

design process.

 The functional verification bottleneck is an effect

of rising the design abstraction level.

 Majority of ASICs require at least one re-spin with

71% of re-spins are due to functional bugs.

Marketing Requirements Document (MRD)

Architecture Specification

Design Specification

RTL Design

Synthesis

Physical Design

Timing Analysis

Tape Out

Verification Plan

6/21/2020 Verification with System Verilog 4

Design Specifications

Floor
Planning Technology

Library

SDF &

Parasitics

Design Entry (Schematic/HDL)

Functional Verification & Power Analysis

Logic & Test Synthesis

Layout Design

Placement & Routing

Static
Timing

Analysis

Gate
Level

Simulation

Formal
Verification

Power
Estimation

Physical Verification

Tapeout

Front End

Back End

Floor Planning & CTS

Example of coding error

The later in the product cycle a bug is found the more costly it is.

Product Cycle

Block

Level
Subsystem

Level

System

Level

Post

Silicon

Cost

of Bug

Field

Why Verify?

Case Study 1:
LOA Technology
2 fully custom FPGA’s

45 man weeks of verification effort 131 bugs found

10 man-weeks of lab debug 9 bugs found

100% statement coverage

FPGAs Need Verification!

Source: Chris Spear: System Verilog for Verification

Case Study 2:
•Fore River Group
•Hardware acceleration for network security.
•Existing testbench with 100 directed tests.
•Shipping to customers.
•7 man-months of effort.
•Using random verification found 40 bugs

Case Study 3:
•Fore River Group
•Packet Switching device
•Verification considered complete
•6 man-months of effort.
•Using random verification found 42 bugs

FPGAs Need Verification!

Source: Chris Spear: System Verilog for Verification

How to verify

all the top-level

connectivity is

correct?

UART I2C

Flash

Interface

10/100

Ethernet

DDR2/3

PCI

Camera

Interface

MIPI CSI-2

MPEG

GPIO UART2

Graphics

Processor

Embedded

Memories

MIPI DSI HDMI TX

Graphics

Processor

JEPEG Codec

CPU Cluster 1

CPU Cluster 2

USB Host 2.0
USB

PHY

USB

PHY
USB OTG2.0

S/PDIF

SATA 1/2

SD/MMC 4-ch

Audio Codec

Touch Screen

Controller

Audio

SubSystem

General

Purpose ADC

Block Diagram of Typical SoC

• System On Chip (SOC) is equivalent to Computer motherboard for phone.

• A typical SOC includes

• CPU - multi-core

• GPU - multi-core

• ISP (Image Signal Processor)

• Video Encoders/Decoders

• Memory & caches

• Miscellaneous components..

• A typical design cycle of around 2 years

• Involves multiple vendors supplying Design

IPs & services creating inter-dependencies.

Smart Phone SoC

Functional Verification

 Process to demonstrate functional correctness of the design

 Accounts for 60 – 80% efforts of ASIC design cycle

 Logic Simulation using System Verilog UVM

 Random Testing – scenarios engineer cannot anticipate

 Functional Testing – scenarios defined by engineer

 Corner Case Testing – Hard to hit scenarios defined

 Regression Testing – Automated combination of all of above with repetitive runs

 Formal Verification using System Verilog Assertions

 Immediate Assertions (similar to if statements)

 Concurrent Assertions (Behavior spans across multiple clock cycles)

 Cover Properties (identify hitting scenarios)

 Emulation Testing – Mimic HW to test real life scenarios

Functional Verification

• A clear and un-ambiguous specification is used to create a Verification Plan

– defines what to test & how.

• Plan defines Test cases, Coverage and Checker model

• Verification Environment consists of:

– Monitors, Drivers, Scoreboards, Stimulus generator , coverage Model

• Stimulus generation is random, automated & user constrained to drive legal stimulus

• Verification is signed-off when all verification goals are met (100%)

Metric Driven Verification

 UVM is a standard verification methodology from

the Accellera Systems Initiative that was developed

with support from multiple vendors: Aldec,

Cadence, Mentor Graphics, and Synopsys.

 It is designed to enable creation of robust, reusable,

interoperable verification IP and testbench

components

 Includes a Reference Guide, a Reference

Implementation in the form of a System Verilog base

class library, and a User Guide.

 First version UVM 1.0 released in 2011

 Supports Object Oriented Programming (OOPS)

concepts

Universal Verification Methodology

Why are Methodologies Needed?

Vertical and horizontal Reuse

Standardized architecture across teams

Automation

Upgradation

Consistent approach – naming conventions

Coding guidelines

Controllability

Vendor Dependence

